Exploring protein fitness landscapes by directed evolution

1 Chen, K. & Arnold, F. H. Tuning the activity of an enzyme for unusual

  • 1

    Chen, K. & Arnold, F. H. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc. Natl Acad. Sci. USA 90, 5618–5622 (1993). The first demonstration of directed evolution by successive rounds of mutagenesis and screening — a strategy now widely used to engineer enzymes.

    CAS 
    PubMed 

    Google Scholar
     

  • 2

    Reetz, M. T. Combinatorial and evolution-based methods in the creation of enantioselective catalysts. Angew. Chem. Int. Ed. Engl. 40, 284–310 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 3

    Boder, E. T., Midelfort, K. S. & Wittrup, K. D. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl Acad. Sci. USA 97, 10701–10705 (2000).

    CAS 

    Google Scholar
     

  • 4

    Campbell, R. E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

    CAS 

    Google Scholar
     

  • 5

    Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6

    Bolon, D. N. & Mayo, S. L. Enzyme-like proteins by computational design. Proc. Natl Acad. Sci. USA 98, 14274–14279 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 7

    Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008). This study shows how computational design and directed evolution can be combined to create and improve new functions.

    PubMed 

    Google Scholar
     

  • 8

    Tokuriki, N. & Tawfik, D. Protein dynamism and evolvability. Science 324, 203 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 9

    Shimotohno, A., Oue, S., Yano, T., Kuramitsu, S. & Kagamiyama, R. Demonstration of the importance and usefulness of manipulating non-active-site residues in protein design. J. Biochem. 129, 943–948 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 10

    Spiller, B., Gershenson, A., Arnold, F. & Stevens, R. A structural view of evolutionary divergence. Proc. Natl Acad. Sci. USA 96, 12305–12310 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 11

    Aharoni, A. et al. The ‘evolvability’ of promiscuous protein functions. Nature Genetics 37, 73–76 (2005). This work shows that enzymes with promiscuous activities that are improved in directed evolution tend to retain their native activities.

    CAS 
    PubMed 

    Google Scholar
     

  • 12

    Sarkar, I., Hauber, I., Hauber, J. & Buchholz, F. HIV-1 proviral DNA excision using an evolved recombinase. Science 316, 1912–1915 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 13

    Fasan, R., Chen, M. M., Crook, N. C. & Arnold, F. H. Engineered alkane-hydroxylating cytochrome P450(BM3) exhibiting native-like catalytic properties. Angew. Chem. Int. Ed. Engl. 46, 8414–8418 (2007). An intermediate selective pressure (activity on octane) was used to direct the evolution of a P450 for high activity on propane — an activity which the original enzyme, a fatty acid hydroxylase, does not exhibit.

    CAS 
    PubMed 

    Google Scholar
     

  • 14

    Reetz, M. T., D Carballeira, J. & Vogel, A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. Engl. 45, 7745–7751 (2006). An alternative directed evolution strategy using structure information to focus mutations achieved a large increase in enzyme stability.

    CAS 
    PubMed 

    Google Scholar
     

  • 15

    Yoo, T. H., Link, A. J. & Tirrell, D. A. Evolution of a fluorinated green fluorescent protein. Proc. Natl Acad. Sci. USA 104, 13887–13890 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 16

    Tsien, R. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 17

    Shaner, N. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotech. 22, 1567–1572 (2004).

    CAS 

    Google Scholar
     

  • 18

    Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19

    Beaudry, A. A. & Joyce, G. F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 20

    Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA 102, 12678–12683 (2005).

    CAS 

    Google Scholar
     

  • 21

    Arnold, F. H., Wintrode, P. L., Miyazaki, K. & Gershenson, A. How enzymes adapt: lessons from directed evolution. Trends Biochem. Sci. 26, 100–106 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 22

    Wintrode, P. L. & Arnold, F. H. Temperature adaptation of enzymes: lessons from laboratory evolution. Adv. Protein Chem. 55, 161–225 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 23

    Smith, J. M. Natural selection and the concept of a protein space. Nature 225, 563–564 (1970). A beautiful description of protein evolution as a walk through sequence space.

    CAS 
    PubMed 

    Google Scholar
     

  • 24

    Mandecki, W. The game of chess and searches in protein sequence space. Trends Biotechnol. 16, 200–202 (1998).

    CAS 

    Google Scholar
     

  • 25

    Wright, S. Evolution in mendelian populations. Genetics 16, 0097–0159 (1931).

    CAS 

    Google Scholar
     

  • 26

    Wolpert, D. H. & Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Comp. 1, 67–82 (1997).


    Google Scholar
     

  • 27

    Kauffman, S. A. & Weinberger, E. D. The NK model of rugged fitness landscapes and its application to maturation of the immune-response. J. Theor. Biol. 141, 211–245 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • 28

    Wagner, A. Robustness and evolvability: a paradox resolved. Proc. Biol. Sci. 275, 91–100 (2008).

    PubMed 

    Google Scholar
     

  • 29

    Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006). This work showed that excess stability provides increased mutational tolerance and allows greater room for adaptation in directed evolution.

    CAS 

    Google Scholar
     

  • 30

    Keefe, A. D. & Szostak, J. W. Functional proteins from a random-sequence library. Nature 410, 715–718 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31

    Axe, D. D. Estimating the prevalence of protein sequences adopting functional enzyme folds. J. Mol. Biol. 341, 1295–1315 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 32

    Taverna, D. M. & Goldstein, R. A. Why are proteins marginally stable? Proteins 46, 105–109 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 33

    Govindarajan, S. & Goldstein, R. A. Evolution of model proteins on a foldability landscape. Proteins 29, 461–466 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 34

    Xia, Y. & Levitt, M. Funnel-like organization in sequence space determines the distributions of protein stability and folding rate preferred by evolution. Proteins 55, 107–114 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35

    Taverna, D. M. & Goldstein, R. A. Why are proteins so robust to site mutations? J. Mol. Biol. 315, 479–484 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 36

    Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. Proc. Natl Acad. Sci. USA 102, 606–611 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 37

    Guo, H. H., Choe, J. & Loeb, L. A. Protein tolerance to random amino acid change. Proc. Natl Acad. Sci. USA 101, 9205–9210 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 38

    Arnold, F. H. Directed evolution: creating biocatalysts for the future. Chem. Eng. Sci. 51, 5091–5102 (1996).

    CAS 

    Google Scholar
     

  • 39

    England, J. L. & Shakhnovich, E. I. Structural determinant of protein designability. Phys. Rev. Lett. 90, 218101 (2003).

    PubMed 

    Google Scholar
     

  • 40

    O’Loughlin, T. L., Patrick, W. M. & Matsumura, I. Natural history as a predictor of protein evolvability. Protein Eng. Des. Sel. 19, 439–442 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 41

    Umeno, D., Tobias, A. V. & Arnold, F. H. Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol. Mol. Biol. Rev. 69, 51–78 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42

    Glasner, M. E., Gerlt, J. A. & Babbitt, P. C. Evolution of enzyme superfamilies. Curr. Opin. Chem. Biol. 10, 492–497 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 43

    Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006). This study shows the role of protein stability in epistasis.

    CAS 
    PubMed 

    Google Scholar
     

  • 44

    Claren, J., Malisi, C., Hocker, B. & Sterner, R. Establishing wild-type levels of catalytic activity on natural and artificial (βα)8-barrel protein scaffolds. Proc. Natl Acad. Sci. USA 106, 3704–3709 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 45

    Drummond, D. A., Iverson, B. L., Georgiou, G. & Arnold, F. H. Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. J. Mol. Biol. 350, 806–816 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 46

    Reetz, M. T., Bocola, M., Carballeira, J. D., Zha, D. X. & Vogel, A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew. Chem. Int. Ed. Engl. 44, 4192–4196 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 47

    Treynor, T. P., Vizcarra, C. L., Nedelcu, D. & Mayo, S. L. Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function. Proc. Natl Acad. Sci. USA 104, 48–53 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 48

    Yoshikuni, Y., Ferrin, T. E. & Keasling, J. D. Designed divergent evolution of enzyme function. Nature 440, 1078–1082 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 49

    You, L. & Arnold, F. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9, 77–83 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 50

    Fujii, R., Kitaoka, M. & Hayashi, K. RAISE: a simple and novel method of generating random insertion and deletion mutations. Nucl. Acids Res. 34, e30 (2006).

    PubMed 

    Google Scholar
     

  • 51

    Qian, Z. & Lutz, S. Improving the catalytic activity of Candida antarctica lipase B by circular permutation. J. Am. Chem. Soc. 127, 13466–13467 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 52

    Neylon, C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucl. Acids Res. 32, 1448–1459 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 53

    Rennell, D., Bouvier, S. E., Hardy, L. W. & Poteete, A. R. Systematic mutation of bacteriophage-T4 lysozyme. J. Mol. Biol. 222, 67–87 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 54

    Axe, D. D., Foster, N. W. & Fersht, A. R. A search for single substitutions that eliminate enzymatic function in a bacterial ribonuclease. Biochemistry 37, 7157–7166 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 55

    Shafikhani, S., Siegel, R. A., Ferrari, E. & Schellenberger, V. Generation of large libraries of random mutants in Bacillus subtilis by PCR-based plasmid multimerization. Biotechniques 23, 304–310 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 56

    Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O. & Arnold, F. H. On the conservative nature of intragenic recombination. Proc. Natl Acad. Sci. USA 102, 5380–5385 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 57

    Moore, J. C., Jin, H.-M., Kuchner, O. & Arnold, F. H. Strategies for the in vitro evolution of protein function: Enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272, 336–347 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 58

    Stemmer, W. P. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • 59

    Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 60

    Aita, T. et al. Surveying a local fitness landscape of a protein with epistatic sites for the study of directed evolution. Biopolymers 64, 95–105 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 61

    Hayashi, Y. et al. Experimental rugged fitness landscape in protein sequence space. PLoS ONE 1, e96 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62

    Bloom, J. D. & Arnold, F. H. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl Acad. Sci. USA 106, 9995–10000 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 63

    Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006). In this study, the authors construct every evolutionary intermediate between two sequences and evaluate the probability of all possible adaptive pathways.

    CAS 
    PubMed 

    Google Scholar
     

  • 64

    Reetz, M. T. & Sanchis, J. Constructing and analyzing the fitness landscape of an experimental evolutionary process. Chembiochem 9, 2260–2267 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 65

    Bernath, K., Magdassi, S. & Tawfik, D. S. Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery. J. Mol. Biol. 345, 1015–1026 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 66

    Liu, L., Li, Y., Liotta, D. & Lutz, S. Directed evolution of an orthogonal nucleoside analog kinase via fluorescence-activated cell sorting. Nucl. Acids Res. 37, 4472–4481 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 67

    Fischbach, M. A., Lai, J. R., Roche, E. D., Walsh, C. T. & Liu, D. R. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc. Natl Acad. Sci. USA 104, 11951–11956 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 68

    Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–786 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69

    Matsumura, I. & Ellington, A. D. In vitro evolution of β-glucuronidase into a β-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 305, 331–339 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 70

    Park, S. et al. Focusing mutations into the P. fluorescens esterase binding site increases enantioselectivity more effectively than distant mutations. Chem. Biol. 12, 45–54 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 71

    Paramesvaran, J., Hibbert, E. G., Russell, A. J. & Dalby, P. A. Distributions of enzyme residues yielding mutants with improved substrate specificities from two different directed evolution strategies. Protein Eng. Des. Sel. 22, 401–411 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 72

    Fasan, R., Meharenna, Y. T., Snow, C. D., Poulos, T. L. & Arnold, F. H. Evolutionary history of a specialized P450 propane monooxygenase. J. Mol. Biol. 383, 1069–1080 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73

    Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nature Struct. Biol. 9, 553–558 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 74

    Hansson, L. O., Bolton-Grob, R., Massoud, T. & Mannervik, B. Evolution of differential substrate specificities in μ class glutathione transferases probed by DNA shuffling. J. Mol. Biol. 287, 265–276 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 75

    Crameri, A., Raillard, S., Bermudez, E. & Stemmer, W. DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391, 288–291 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 76

    Ostermeier, M., Shim, J. H. & Benkovic, S. J. A combinatorial approach to hybrid enzymes independent of DNA homology. Nature Biotech. 17, 1205–1209 (1999).

    CAS 

    Google Scholar
     

  • 77

    Lutz, S., Ostermeier, M., Moore, G. L., Maranas, C. D. & Benkovic, S. J. Creating multiple-crossover DNA libraries independent of sequence identity. Proc. Natl Acad. Sci. USA 98, 11248–11253 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 78

    Hiraga, K. & Arnold, F. H. General method for sequence-independent site-directed chimeragenesis. J. Mol. Biol. 330, 287–296 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 79

    Heinzelman, P. et al. A family of thermostable fungal cellulases created by structure-guided recombination. Proc. Natl Acad. Sci. USA 106, 5610–5615 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 80

    Otey, C. R. et al. Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol. 4, e112 (2006). An example of the use of recombination to create thousands of chimeric enzymes with numerous mutations and new properties that are not exhibited by the parent enzymes.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81

    Campbell, R. K., Bergert, E. R., Wang, Y. H., Morris, J. C. & Moyle, W. R. Chimeric proteins can exceed the sum of their parts: implications for evolution and protein design. Nature Biotech. 15, 439–443 (1997).

    CAS 

    Google Scholar
     

  • 82

    Bloom, J. D., Romero, P. A., Lu, Z. & Arnold, F. H. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol. Direct 2, 17 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83

    Amitai, G., Gupta, R. D. & Tawfik, D. S. Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J. 1, 67–78 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84

    Bershtein, S., Goldin, K. & Tawfik, D. S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 85

    Bloom, J. D. et al. Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5, 29 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86

    Landwehr, M., Carbone, M., Otey, C. R., Li, Y. & Arnold, F. H. Diversification of catalytic function in a synthetic family of chimeric cytochrome P450s. Chem. Biol. 14, 269–278 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87

    Li, Y. et al. A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments. Nature Biotech. 25, 1051–1056 (2007).

    CAS 

    Google Scholar
     

  • 88

    Counago, R., Chen, S. & Shamoo, Y. In vivo molecular evolution reveals biophysical origins of organismal fitness. Mol. Cell 22, 441–449 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 89

    Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002). An excellent example of stability-mediated epistasis.

    CAS 
    PubMed 

    Google Scholar
     

  • 90

    Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 91

    Bloom, J. D., Arnold, F. H. & Wilke, C. O. Breaking proteins with mutations: threads and thresholds in evolution. Mol. Syst. Biol. 3, 76 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92

    Gupta, R. D. & Tawfik, D. S. Directed enzyme evolution via small and effective neutral drift libraries. Nature Methods 5, 939–942 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 93

    Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 94

    Fields, P. A. Protein function at thermal extremes: balancing stability and flexibility. Comp. Biochem. Physiol. A. 129, 417–431 (2001).

    CAS 

    Google Scholar
     

  • 95

    Giver, L., Gershenson, A., Freskgard, P. O. & Arnold, F. H. Directed evolution of a thermostable esterase. Proc. Natl Acad. Sci. USA 95, 12809–12813 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • 96

    Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97

    Peisajovich, S. G. & Tawfik, D. S. Protein engineers turned evolutionists. Nature Methods 4, 991–994 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 98

    Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 99

    Miller, S. P., Lunzer, M. & Dean, A. M. Direct demonstration of an adaptive constraint. Science 314, 458–461 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 100

    Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl Acad. Sci. USA 101, 11531–11536 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101

    Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 102

    Robertson, D. & Joyce, G. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467–468 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 103

    Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 104

    Lincoln, T. & Joyce, G. Self-sustained replication of an RNA enzyme. Science 323, 1229–1232 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105

    Chatterjee, R. & Yuan, L. Directed evolution of metabolic pathways. Trends Biotech. 24, 28–38 (2006).

    CAS 

    Google Scholar
     

  • 106

    Schmidt-Dannert, C. Directed evolution of single proteins, metabolic pathways, and viruses. Biochemistry 40, 13125–13136 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 107

    Collins, C. H., Leadbetter, J. R. & Arnold, F. H. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nature Biotech. 24, 708–712 (2006).

    CAS 

    Google Scholar
     

  • 108

    Haseltine, E. L. & Arnold, F. H. Synthetic gene circuits: design with directed evolution. Annu. Rev. Biophys. Biomol. Struct. 36, 1–19 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 109

    Feng, X. et al. Optimizing genetic circuits by global sensitivity analysis. Biophys. J. 87, 2195–2202 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110

    Gavrilets, S. Evolution and speciation on holey adaptive landscapes. Trends Ecol. Evol. 12, 307–312 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 111

    Glieder, A., Farinas, E. T. & Arnold, F. H. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nature Biotech. 20, 1135–1139 (2002).

    CAS 

    Google Scholar
     

  • 112

    Peters, M. W., Meinhold, P., Glieder, A. & Arnold, F. H. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125, 13442–13450 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Source Article