Insecticide resistant Anopheles gambiae have enhanced longevity but reduced reproductive fitness and a longer first gonotrophic cycle

  • WHO. World malaria report 2020: 20 years of global progress and challenges. (2020).

  • Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol 27. https://doi.org/10.1016/j.pt.2010.08.004 (2011).

  • Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).

    CAS 
    Article 

    Google Scholar
     

  • Alout, H., Roche, B., Dabiré, R. K. & Cohuet, A. Consequences of insecticide resistance on malaria transmission. PLoS Pathog. 13, e1006499 (2017).

    Article 

    Google Scholar
     

  • Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. K. & Yan, G. Effects of microclimatic changes due to deforestation on the survivorship and reproductive fitness of anopheles gambiae in Western Kenya Highlands. . Am. J. Trop. Med. Hyg. 74, 772–778 (2006).

  • Lardeux, F. J., Tejerina, R. H., Quispe, V. & Chavez, T. K. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar. J. 7, 1–17 (2008).

    Article 

    Google Scholar
     

  • Afrane, Y. A., Little, T. J., Lawson, B. W., Githeko, A. K. & Yan, G. Deforestation increases the vectorial capacity of anopheles gambiae giles to transmit Malaria in the Western Kenya Highlands. Emerg. Infect. Dis. 10, 1533–1538 (2008).

    Article 

    Google Scholar
     

  • Alout, H., Roche, B., Dabiré, R. K. & Cohuet, A. J. P. p. Consequences of insecticide resistance on malaria transmission. 13, e1006499 (2017).

  • Vézilier, J., Nicot, A., Gandon, S. & Rivero, A. J. P. o. t. R. S. B. B. S. Plasmodium infection decreases fecundity and increases survival of mosquitoes. 279, 4033–4041 (2012).

  • McCarroll, L., Hemingway, J. J. I. b. & biology, m. Can insecticide resistance status affect parasite transmission in mosquitoes? 32, 1345 (2002).

  • Platt, N. et al. Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae. 115, 243–252 (2015).

  • Nouage, L. et al. Influence of GST-and P450-based metabolic resistance to pyrethroids on blood feeding in the major African malaria vector Anopheles funestus. (2020).

  • Rigby, L. M. et al. Identifying the fitness costs of a pyrethroid-resistant genotype in the major arboviral vector Aedes aegypti. 13, 1–12 (2020).


    Google Scholar
     

  • Tchouakui, M. et al. Fitness costs of the glutathione S-transferase epsilon 2 (L119F-GSTe2) mediated metabolic resistance to insecticides in the major African malaria vector Anopheles funestus. 9, 645 (2018).

  • Kumar, S. et al. Diminished reproductive fitness associated with the deltamethrin resistance in an Indian strain of dengue vector mosquito. Aedes aegypti L. 26, 55–64 (2009).


    Google Scholar
     

  • Nkahe, D. L. et al. Fitness cost of insecticide resistance on the life-traits of a Anopheles coluzzii population from the city of Yaoundé. Cameroon. 5, 171. https://doi.org/10.12688/wellcomeopenres.16039.2 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Machani, M. G. et al. Phenotypic, genotypic and biochemical changes during pyrethroid resistance selection in Anopheles gambiae mosquitoes. Sci. Rep. 10, 19063. https://doi.org/10.1038/s41598-020-75865-1 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. World Malaria Report 2016. Geneva: World Health Organization (2016).

  • Shute, G. T. A method of maintaining colonies of east african strains of anopheles gambiae. Ann. Trop. Med. Parasitol. 50, 92–94. https://doi.org/10.1080/00034983.1956.11685743 (1956).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Knols, B. G. et al. MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya. Malar. J. 1, 19 (2002).

    Article 

    Google Scholar
     

  • Afrane, Y. A., Zhou, G., Lawson, B. W., Githeko, A. K. & Yan, G. Life-table analysis of Anopheles arabiensis in western Kenya highlands: Effects of land covers on larval and adult survivorship. Am. J. Trop. Med. Hyg. 77, 660–666 (2007).

    Article 

    Google Scholar
     

  • Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to mantain malaria control. Parasites Vectors 32, 187–196 (2016).

    CAS 

    Google Scholar
     

  • Klowden, M. J. & Briegel, H. Mosquito gonotrophic cycle and multiple feeding potential: Contrasts between Anopheles and Aedes (Diptera: Culicidae). J. Med. Entomol. 31, 618–622 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Mebrahtu, Y. B., Norem, J. & Taylor, M. Inheritance of larval resistance to permethrin in Aedes aegypti and association with sex ratio distortion and life history variation. Am. J. Trop. Med. Hyg. 56, 456–465 (1997).

    CAS 
    Article 

    Google Scholar
     

  • Ma, Z., Gulia-Nuss, M., Zhang, X. & Brown, M. R. Effects of the botanical insecticide, Toosendanin, on blood digestion and egg production by female Aedes aegypti (Diptera: Culicidae): topical application and ingestion. J. Med. Entomol. 50, 112–121 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Gulia-Nuss, M., Robertson, A. E., Brown, M. R. & Strand, M. R. Insulin-like peptides and the target of rapamycin pathway coordinately regulate blood digestion and egg maturation in the mosquito Aedes aegypti. PLoS ONE 6, e20401 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Martins, A. J., Bellinato, D. F., Peixoto, A. A., Valle, D. & Lima, J. B. P. Effect of insecticide resistance on development, longevity and reproduction of field or laboratory selected Aedes aegypti populations. PLoS ONE 7, e31889 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Sy, F. A., Faye, O., Diallo, M. & Dia, I. Effects of insecticide resistance on the reproductive potential of two sub-strains of the malaria vector Anopheles coluzzii. J. Vector Borne Dis. 56, 207–211. https://doi.org/10.4103/0972-9062.289401 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • de Oliveira, C. D., Tadei, W. P., Abdalla, F. C., Paolucci Pimenta, P. F. & Marinotti, O. Multiple blood meals in Anopheles darlingi (Diptera: Culicidae). J. Vector Ecol. 37, 351–358 (2012).

  • Norris, L. C., Fornadel, C. M., Hung, W.-C., Pineda, F. J. & Norris, D. E. Frequency of multiple blood meals taken in a single gonotrophic cycle by Anopheles arabiensis mosquitoes in Macha, Zambia. Am. J. Trop. Med. Hyg. 83, 33 (2010).

    Article 

    Google Scholar
     

  • Oliver, S. V. & Brooke, B. D. The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit. Vectors 7, 1–12 (2014).

    Article 

    Google Scholar
     

  • Lardeux, F., Loayza, P., Bouchité, B. & Chavez, T. Host choice and human blood index of Anopheles pseudopunctipennis in a village of the Andean valleys of Bolivia. Malar. J. 6, 1–14 (2007).

    Article 

    Google Scholar
     

  • Farjana, T. & Tuno, N. Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 50, 838–846 (2013).

    Article 

    Google Scholar
     

  • Osoro, J. K. et al. Insecticide resistance exerts significant fitness costs in immature stages of Anopheles gambiae in western Kenya. Malar. J. 20, 1–7 (2021).

    Article 

    Google Scholar
     

  • Telang, A., Frame, L. & Brown, M. R. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). J. Exp. Biol. 210, 854–864. https://doi.org/10.1242/jeb.02715 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Belinato, T. A., Martins, A. J. & Valle, D. Fitness evaluation of two Brazilian Aedes aegypti field populations with distinct levels of resistance to the organophosphate temephos. Mem. Inst. Oswaldo Cruz 107, 916–922 (2012).

    Article 

    Google Scholar
     

  • Brito, L. P. et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS ONE 8, e60878 (2013).

    MathSciNet 
    CAS 
    Article 

    Google Scholar